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Dynamics of coupled topological solitons in a weakly coupled 
discrete sine-Gordon system with local impurities 

P Woafo and T C Kofan6 
Labomoire de Mecanique. Faculte des Sciences, Universite de Yaounde. BP 812 Yaound6, 
Came" 

Received 6 July 1992 infinal form 29 October 1992 

Absttact. We study the dynamics of kinks andlor antikinla in two weakly coupled discrete sine- 
Gordon chains with local impurities. We use the Lagrangian formalismto derive the effective 
equations of motion for the soliton coordinates, which takes into a" the inhomogeneities, 

. the discreteness of the latdce and ule coupling between chains. It a p p n  that the repulsive or 
the attractive c k t e r  of the impurities depends on the soliton polarities and on competition 
belween the impurities related to the elastic conshts, the substrate potential barriers and the 
coupling W e e n  the chains. Conditions for the reflection and the attraction of low-velocity 
kink-kink, kink-antikink and antikin!-an&ink pairs are obtained and the threshold velocities 
for soliton reflection by impurities are derived. 

. 

. .  
1.~ Introduction , .  

The study of interactions of linear and non-linear waves with impurities is a subject 
of considerable interest in various branches of physics. Non-hear and non-integrable 
equations are always obtained from disordered and inhomogeneous systems. The a4 
and sinffiordon equations, which model the propagation of waves in Frenkel-Kontorova 
lattices, in Josephson transmission lines, in charge-density-wave systems and in ferroelectric 
and ferromagnetic materials, are widely studied examples. 

In general, during their interaction with impurities, the topological solitons (kinks, 
fluxons, charge density waves and domain walls) may be (i) captured and (ii) reflected 
or transmitted with more or less distortion of their structure and a drastic change in 
their dynamical behaviour (Kivshar and Malomed 1989, Woafo~and Kofg.6 1992). The 
generation of new degrees of freedom (e.g. impurity modes) has also been obtained 
(Fraggis et al 1989, Braun and Kivshar 1991). As a consequence, the transport properties 
(transmission coefficient, diffusion constant and conduction) of linear and non-linear one- 
dimensional systems, which are sensitive to the presence of imperfections and disorder, &e 
therefore modified. In particular, in the presence of local impurities, the diffusion constant 
of kinks depends on the total character of the kink-impurity interaction (see Braun and 
Kivshar 1991 and references therein). 

Owing to a lack'of mathematical formalism, the study of the effects of inhomogeneities 
and disorder in physical models has so far been limited in the continuum limit. However, 
in the last 15 years, some  progress^ has been made in view of analysing the discreteness 
effects in systems where the kink width is comparable to the lattice constant. It has 
been shown that the translational invariance of the kink motion in the continuum lattice 
is destroyed by radiative damping and the lattice spacing periodical or many-periodical 

~. 
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variation of kink parameters: a kink of a discrete lattice has a periodically varying mass 
and moves in a periodic Peierl-Nabarro (PN) potential (Peyrard and Remoissenet 1982, 
Combs and Yip 1983, Peyrard and Kruskal 1984, Boesch et a1 1989, Woafo er al 1991% 
1992a and references therein). This evidently leads to a renormalization of the kink diffusion 
constant (Combs and Yip 1984, Kunz and Combs 1985) and other thermodynamic properties 
(Trullinger and Sasaki 1987, Willis and Boesch 1990, Woafo er al 1992b). 

In non-Hamiltonian and inhomogeneous lattices, the discreteness effects give rise to 
other phenomena. For instance, Peyrard and Kruskal (1984) showed after simulation that 
the velocity of a discrete kink driven by a small external force evolves by steps. That 
is, for a large range of applied forces, the final velocity remains almost constant and then 
jumps to another value where it is again constant for a new range of the force. Those 
steps occur at some critical velocities for which the emission of phonons, due to lattice 
discreteness, is absent. Recently, it has been shown that in the presence of a small extemal 
force and small damping, the discrete kink moves like a damped driven particle in the PN 
potential (Pouget et al 1989). When the constant extemal force is applied in the O4 model, 
it destroys the symmetry of the substrate potential and the asymmetric kink moves in a PN 
potential whose barrier decreases when the force increases (Woafo et a1 1991b). In recent 
papers, the problem of kink interactions with local impurities in a sinPGordon (SG) lattice 
has been analysed. Considering the continuum l i t ,  it has been demonstrated that, if the 
impurity mass is large enough in comparison with the standard mass in the SG model, a 
higher-velocity kink will be reflected while a lower-velocity kink will pass. However, if the 
impurity mass is not too large, the kink can pass the impurity almost freely at any initial 
velocity (Bang Fei er a1 1992). But, this is not the same in the discrete limit, where it is 
seen that the small impurity mass also leads to a reflection (Braun and Kivshar 1990,1991). 

Our aim in this paper is to study the influence of various types of impurity (mass 
impurities, elastic spring impurities, substrate potential barrier impurities and interchain 
coupling impurities) on the motion of toplogical solitons in two weakly coupled SG chains. 
Interesting results have already been obtained for the homogeneous coupled model (Woafo 
eta1 1992a). 

The organization of the paper is as follows. In section 2, we present the discrete model 
and the various types of impurity. Section 3 deals with the derivation of the equations of 
motion, which are analysed in section 4. In section 5, we conclude our work by outlining 
some interesting problems that are still under investigation. 

P Woafo and T C Kofmd 

2. Weakly coupled sine-Gordou systems with local impurities 

We consider a weakly coupled discrete SG system, which can be derived fiom the following 
Lagrangian: 

- +€i [ 1 - cos ($) - ;yi [ 1 - cos ($) .,i] 
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We have'denoted by @j,i (with j = 1,2) &e displacement of the particle in cell i of the 
chain . j .  The constant a is the period of the substrate potential. The first two terms in (2.1) 
are the kinetic energies of the two chains (t being the time variable). The following four 
terms describe the potential energy, which consists of elastic energy (the two square terms) 
and the energy of interaction of a particle with the substrate (the two cosine terms). The last 
two terms .denote the energy of  interaction between the chains. They take into account.the 
interaction between the relative displacements of particles in both chains and the interaction 
between a particle of one chain with its nearest neighbour of the other chain (Coutinho et 
a1 1981,~ Braun et aE 1988). For the sake of &nerality, we have assumed that the hasses 
(mi, M i ) ,  the elastic constants (ki, g i )  and the substrate potential baniers ( ~ i ,  E) in the site 
i of the lattice are different from one chain to another, but are related by equation (2.3) 
below. The-coupling coefficients pi and ai are considered as~small quantities (p;l and 
lail << 1) throughout this paper. 

We introduce the impurities in the discrete model by assuming that the masses, the 
spring or elastic constants, the substrate potential barriers and the coupling coefficients are 
present as single-point impurities on lattik cells I, p and n. That is 

k, = k (1 + mi = m (1 + ,Sjj) A m  

ai = (Y (1 + -8,>. A f f  

The impurities on the first chain occur on cell I, those of the second chain on cell p and the 
one associated with interchain coupling on cell n. Taking I, p and n as different integers 
has the advantage of considering the general situation that may arise in coupled chains. 

In equations (2.2) Am,  Ak, AE,  A M ,  Ag, A y ,  Ap and Act stand for small variations 
of the corresponding parameters on point impurities. They may be positive or negative. We 
assumed for simplicity that the constants m, M ,  k ,  g, E and y are related by the equation 

M / m  = g / k  = Y / E .  (2.3) 

For the homogeneous system, the Lagrangian (2.1) leads, in the continuum limit, to 
two coupled and non-linear partial differential equations, namely the coupled SG equations. 
When p = a = 0, the system admits large-amplitude soliton solutions (topological solitons 
or kinks), which, with the parameters of the first chain, have the form 

OO(X - Vt) 
n Co(l - V2/C,)'/Z 

where x is the space variable and 

mi  = 2x2e/maZ C; = kb2/m. (2.4b) 

In equation (2.4a), V represents the soliton velocity and U, = f l  is the soliton polarity 
(ul = 1 for kink and UI = -1 for antikink). 

= 0 and 
4 # 0.41 # 0 and 4 = 0, 4 = -91) can easily be obtained. In the general case where 

When p and a differ from zero, the linear and trivial non-linear excitations 
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there are two different non-linear excitations in both chains, it has been shown by means 
of the classical perturbation method (,¶ and LY being the perturbation parameters) that the 
interaction between the chains distorts the soliton shape (Kivshar and Malomed 1988, Bang  
1987, Woafo et al 1992a, D i h d 6  and Kofan6 1992). However, numerical calculation 
reveals that the distortions have a slight influence on the soliton energy. Therefore, one 
can admit the propagation, under the action of the coupling terms, of u n d i s t d  solitons 
(e.g. the form (2.4)). In the framework of the McLaughlin and Scott (1978) perturbation 
theory for non-linear waves, this problem has been considered by Braun et al (1988). It 
has been shown that the interaction (attraction or repulsion) between kinks belonging to 
different chains is determined by the soliton relative polarity U and the interchain coupling 
(e.g. by the parameters a, B and c = suz) .  

The effect of g, LY and B has also been analysed in the discrete limit. The collective 
coordinate method associated with Duac's formalism for constrained Hamiltonian dynamics 
has been used to derive the equations of motion for centres of coupled topological solitons 
(Woafo et af 1992a). It appears that in the case B > 0 (with LY = 0) the coupling reduces 
(increases) the trapping processes when the solitons have the same polarities (different 
polarities). The inverse situation is observed when B < 0. In section 3, we consider the 
soliton motion in the inhomogeneous and discrete system. The Lagrangian formalism is 
used to derive the effective equations of motion of the coupled solitons. 

3. Equations of motion for coupled solitons in the inhomogeneous system 

To analyse the dynamics of topological solitons in the coupled inhomogeneous model, let 
us introduce the dimensionless variables for the displacement fields $,,i and the time t 
respectively: 

Assuming that the interchain coupling and the impurities act only on the soliton positions 
in the lattice, the dimensionless variables yj,i can be approximated, in the non-relativistic 
regime, by the m a =  pouget et ai 1989, Braun and Kivshar 1991) 

yj.i = 4tan-'[exp(0jtj,i)1 (3.24 

where 

gj,i = i - x, (3.26) 

and 

ej = ujp 

with 

(3.2~) 
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The parameters Xj ( j  = 1,2) are the soliton coordinates in the discrete lattice (XI being the 
position of the soliton in the first chain and XZ that for the second chain). In the continuum 
limit of a homogeneous and uncoupled system, X, are proportional to time 5 ,  but in the 
discrete limit, they possess a rich and complex dependence on time (see the quoted paper on 
the discreteness effects). Substituting (3.1) and the ansun (3.2) in the Lagrangian (2.1). we 
use the Lagrangian formalism to derive the following set of equations for the coordinates 
X, of the centres of the coupled solitons: 

Am (MI +4A10t-sechZ81(1 m -XI)) XI + (2) X: = A l E l  sin(2nX1) 

(3.36) 

with 

where 

q = r Z / p  2 . 

Similar expressions can be written for 'Ez, CZO and CZI by replacing 61 by &. For. the 
derivation of E,. Cj0 and Cjl .  one should consult Woafo etql (1992a). The quantities Mj 
are the masses of solitons in the coupled system. They can-be expanded into Fourier series 
to give (see Woafo et al 1992a) 

~' (3.54 
- .  

Mj E~ Mjo + Mj1 cos(2rXj) 

with 

Mjo =8Ajb'j Mjl = 16?zAj/sinb(rrZ/0j). (3.56) 
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The parameter d in (3.3). assumed small and constant, stands for the distance 

d =Xi - X2 (3.6) 

between the centre of solitons of different chains. The interchain energy Ula* due to 
impurities is defined as 

U1znb = (azOlAp/n2)sechZOl(n- XI) -d  sechZO1(n -X1)tanhO1(n-X1) 

+2Acusinz[dOl sech Ol(n -XI)]. (3.7) 

A similar expression can be obtained for XZ hy replacing XI by XZ and 81 by Oz. In this 
case, the minus sign before d is replaced by a plus sign. 

muations (3.3) and (3.7) show that the soliton of the first chain can be reflected or 
attracted (trapped) on impurity sites 1 and n while the soliton of the second chain can suffer 
similarly on sites p and n. The repulsive or attractive character of impurities depends on 
the soliton polarities and on the signs of the quantities 

Ak/k+ AE/E and Ap 

for the first chain and 

A g / g + A y / ~  and AS 

for the second chain. This state of intrachain and interchain attractions and repulsions in 
different sites may create new effects on the dynamics of the coupled system, such as chaotic 
behaviour (Woafo and Kofane 1992). As shown below (section 4), the set of coupled and 
non-linear equations (3.3) has a rich variety of dynamical properties. 

4. Analysis of the ef€ective equations of motion for centres of coupled solitons 

4.1. Motion of toplogical solitons in a homogeneous coupled system 

When the chains of particles are homogeneous, the analysed model reduces to that 
considered by Woafo et a1 (1992a), but with some interesting changes and a new coupling. 
Indeed, in the present work, we have taken into account the lattice parameters, which differ 
from one chain to another (m # M, k # g, E # y). This leads to different values for the 
soliton dynamical parameters in the two coupled chains (e.g. El # E2 and MI # Mz) and 
allows the discussion of section 4.3 since Ul i~ (0 )  # Uzid(0). We have also considered the 
coupling between the nearest-neighbour particles of different chains. This adds the cud terms 
in (3.3). The coupling coefficient p modifies the PN banier and consequently the frequency 
of vibrations for the pinned kink in the PN potential. If p > 0, there is a reduction (an 
increase) of the PN potential when the solitons have the same polarities (opposite polarities). 
The case f3 < 0 yields the inverse process. 
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4.2. Motion of solitons in inhomogeneous uncoupled chains 

An interesting case is one where there is no coupling between the chains (p = U = 0). 
Then, for each chain, there is an uncoupled equation of motion for the centre of the soliton. 
For instance, in the first chain, we have 

Am 1 dM1 
(MI +4AIe+sechz01(1 m -XI)) XI +-  2 (-) dX1 X ;  =A~F~ls in (ZrXl )  

Taking MI 2: Mm = 8A101, since the periodically varying part of MI can be neglected 
(MII << MIO), the above equation takes the form 

-$ sechZe1(I-XI)taah81(1-XI). (4.lb) 
k e  

With u1 = 1 and 1 = 0, one obtains 

;'(; . 2  Ak A€) +- -XI+-+-  sech2pXtanhpXl. k c  
( 4 . k )  

This last equation differs from (6.12) (with r = F = 0) of Braun and Kivshar (1991) on 
two points. The first difference is that, in our equation, the mass impurity renormakes 
the acceleration coefficient. This renormalization comes naturally from the Lagangian 
formalism. The second difference comes from the PN barrier EPN = F~I/H (the coefficient of 
sin(kXI)), which in our work contains the supplementary multiplicative term ( 2 ~ ~ / p ~ + l ) .  
Its origin is in the order of huncation of the discreteness effects (see Woafo et 01 199%). 

4.3. Case ofsingle point impuriry 

This corresponds to the situation where all the impurities are localized in the same cell of 
the coupled lattice, for instance in cell 0 (1 = p = n = 0). We assume for the analysis that 
follows that the distance between the solitons is equal to zero (d = 0). Then, we find that 
the soliton of the first chain moves in the effective potential 
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where El defined by equation (3 .4~)  depends on the coupling coefficient p, U0 is an 
energy constant and U,,"h is the potential energy due to inhomogeneous spring constants 
and subshate potential barriers. The influence of the (L coupling disappears since d = 0. 

If Am = 0 and MI N Mlo, the soliton dynamics is then described by the following 
energy conservative equation 

f M l o x :  + uefi = E t  (4.3) 

where Ek is the total and constant energy of the soliton. 
It must be noted that a similar equation can be written for the soliton of mass M2. which 

propagates in the second chain. As shown in (4.2a), the effective potential contains two 
parts. The first part, L l p ~ ,  due to the discrete nature of the lattice, is the periodic PN potential. 
Its effects on soliton motion have already been analysed in section 4.1. The second part 
of the potential, Ul ioh .  is the impurity potential. It depends on Ak, A E  and the variation 
A p  of the coupling coefficient between the chains. Ul,* has a sech form and is therefore 
localized around the impun'ty site; that is around XI = 0, where it has its extremum 

(4.4) 

The repulsive or the attractive character of the impurity potential depends on the sign of 
the quantity 

Ak A€ u2Ap --+-+- 
k e 2 A l n  

for the first chain or 

Ag A y  a2A -+-+- 
g Y 2Azn 

for the second chain. 
If it is positive (negative), the impurity potential is repulsive (attractive). This yields 

a possible competition between the impurities related to the elastic constants, the substrate 
potential barriers and the coupling coefficients between the chains of particles. We mention 
that when the solitons are far from the impurity site, their motion is modulated by the PN 
potential since U,ioh goes to zero. 

When the solition width is large enough (/L < I), the PN potential disappears and the 
soliton dynamics depends only on their interaction with the localized impurities. In this 
case, near the impurity site, the motion of the coupled solitons is described by the following 
set of ordinary differential equations: 

(4.5a) 

(4.56) 

We recall that uj = 1 for kinks and uj = -1 for antikinks. From (4.3, we can write the 
following results for the low-velocity solitons concerning the attractive and the repulsive 
character of the impurity: 
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Ag A y  azAp 
K * = - + - + -  2 0  Ak a Z M  ,o and 

k E 2 A i ~  g Y ZAzn 
KI =-+-+- 

(i) two coupled kmks are reflected by the impurity potential; (ii) two coupled antikinks are 
trapped; (iii) a kink of the first chain is reflected while an antikink of the second chain is 
trapped and vice versa. 

Second result. If 

~ 

K1 < O  and Kz < 0 

(i) two coupled kinks are trapped: (ii) two coupled antikinks are reflected: (iii) an antikink 
of the first chain is reflected while a kink of the second chain is trapped and vice versa. 

Third result. If 

K1 > O  and K z < O  

(i) a kink of the first chain is reflected while a kink of the second chain is trapped, (ii) an 
antikink of the first chain is trapped while a kink of the second chain is also trapped; (iii) 
a kink of the first chain is reflected while an antikink of the second chain is also reflected 
and vice versa 

Fourth result. This is obtained for 

We then replace the first chain by the second one and vice versa in (i), (ii) and (iii) of the 
third result. 

These interesting results show that the kink and the antikink do not see an impurity 
potential in the same manner. When a kink is reflected by an impurity potential, an antikink 
is attracted and vice versa. In the case of a repulsive impurity potential for solitons of both 
chains, the low-velocity coupled solitons are reflected. But with a sufficient kinetic energy 
greater than ILll,.h(0)l+lUzinh(O)I, the coupled solitons will surmount the hills created by the 
impurity with more or less alteration of their topological shucture and dynamical behaviour. 

When the impurity potential is attractive for solitons of both chains, the low-velocity 
coupled solitons are trapped in the holes created by the impurity. Then, they oscillate with 
frequencies Ql and Q2 defined as 

Ak A6 a2Ab - + - + - 
k E 2 A l n  

for the soliton of the first chain and 

(4.64 

for the soliton of the second chain. Since in general A1 # Az. k # g and E # y ,  we have 
!21 # PI. However, because of the radiative effects due to interactions between the solitons 
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and the impurities, the soliton velocities go to zero with time (see Kivshar and Malomed 
1989). 

From the above analysis another interesting case appears where a soliton of one chain 
is reflected by the hill created by the impurities while that of the other chain is trapped in 
the hole also created by the impurities. 

When the solition energy is so low that it is trapped by the PN barrier in the equilibrium 
site, x j h  = h + $ (h being an integer), that is midway between two particles of the lattice, 
then it oscillates around this site with frequency 

P Woafo and T C Kofme 

where 

miN = 271 E1 /8f i  (4.8) 

for the soliton of the first chain. An identical equation can he written for the second chain. 
The PN frequency m p ~  decreases exponentially when the soliton width increases. It depends 
on the coupling coefficient p and on the relative polarity U of the solitons that propagate 
along the coupled chains (Woafo et al  1992a). 

4.4. Case of mars impurities 

When the mass impurities Am and AM are considered alone, the soliton centre position 
XI satisfies, in the case of negligible discreteness effects and for d = 0 ( E  = p = n = 0), 
the following equation: 

A m .  
m 

Am 
m 

Mi +4A18;- sechz81XI XI =4A18~-X~sechZ6'lXl tanh0lX1 (4.9) 

which in the phase space (Xi, XI) takes the form 

(4.10) Mio 
MIO + 4A18:(Am/m) sech281X1 

where X o  is the soliton initial velocity. A similar equation can be written for X,. At the 
impurity site XI = 0, the soliton velocity takes the value 

(4.11) 

It therefore appears (in connection with the sech function shape) that, in the case of a 
heavy mass impurity (Am > 0), the soliton velocity, initially constant, decreases when 
approaching the impurity. Just after, the velocity increases until it reaches the initial 
constant value. The inverse process occurs in the case of a light impurity (Am < 0). 
When discreteness effects are associated with the mass impurity, it can be shown that XI 
and XI are linked by the equation (obtained through the method of variations of constants) 

(4.12) 
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where C is an arbitrary constant depending, as shown below, on the soliton initial velocity. 
According to its value, the kink motion is separated into two modes: namely the transmission 
mode for which the soliton goes through the impurity zone and the reflection mode. Indeed, 
assuming that the kink velocity vanishes at the impurity site, that is X I  = 0 for X1 = 0, a 
critical value C, for C is defined as 

(4.13) 

For C z C,, the kink is transmitted through the impurity, while for C < C,, there is a 
reflection. Similar qualitative results have been obtained by Braun and Kivshar (1991) and 
Mefougue et al (1992). To derive the threshold velocity that separates the two propagation 
modes, we assume that the kink is initially pinned in a PN well, far from the impurity site, 
where it has a minimum energy. The assumption leads to 

C = MIOX: - A ~ E I / ~ .  (4.14) 

From (4.13) and (4.14). the threshold velocity Xk, is defined as 

(4.15) 

It is just the critical velocity under which a kink is trapped by the PN barrier. Taking into 
account the variations of k and E ,  one can show that the threshold velocity is 

(4.16) 

This last equation shows that the critical velocity is related to the local variations of mass, 
of the elastic constant k and of the substrate potential barrier c. We recall that the above 
analysis can also be done in the second chain (for Xz) and the effects of he coupling appear 
on the relative polarity c and the coupling coefficient fl  through E,. 

2A,EI + MIO+4A1@Am/m Ak 
xocr ' 2  - - - MI o (k+e). 

~ M I O  

5. Conclusion 

In this work, we have considered the motion of topological solitons in weakly coupled sine- 
Gordon chains with local impurities. The coupling takes into account the interaction between 
the relative displacements of particles in both chains and the interaction between a particle of 
one chain with its nearest neighbour of the other chain. Various types of impurity localized 
in different sites have k e n  considered. They correspond to local variations of masses of 
particles, of elastic constants, of substrate potential barriers and of the coupling coefficients 
between the chains. In the discrete limit, we have used an ansa@. based on the well known 
exact topological soliton of the one-dimensional SG equation. The Lagrangian formalism 
has been used to show that the dynamics of the coupled solitons can be described by a set of 
two coupled non-linear differential equations whose coefficients and potential forces depend 
on the different locations of impnrities and on the coupling coeffjcients between the chains 
of part~cles. The attraction (or trapping) and reflection sites of a soliton of the first chain are 
different from those of a soliton of the second chain. The repulsive or attractive character of 
impurities depends on the soliton polarities and on the signs of different impurity potential 
banien. By considering a point impurity, it has been shown that the coupled topological 
solitons with low velocities (kink-kink, kink-antikink and antikink-antikiik pairs) can be 
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reflected or attracted. The threshold conditions for soliton reflection by the impurities has 
been derived. A situation has also appeared where the soliton of one chain is reflected while 
that of the other chain is trapped. 

The general case where the impurity sites I ,  p and n are different and the case of non- 
zero value for d may yield interesting new effects. The high- and low-velocity regimes 
should be analysed and particular attention should be given to the situation where one of 
the coupled solitons encounters a hill while the other encounters a hole (the hole and hill 
potentials created by the impurities). The radiative effects have not yet been considered in 
the present work. However, in a model such as ours, there are various sources of radiative 
effects: emission caused by the discreteness effects (Ishimon and Munakatta 1982, Peyrard 
and Kruskal 1984, Boesch et al 1989), emission due to the interaction of solitons with 
impurities (Kivshar and Malomed 1989) and excitation of localized oscillations around the 
impurities by the topological solitons (Fraggis et ai 1989). The details of each of these 
phenomena are under investigation. 

P Woafo and T C Kofand 
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